Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptome response to embolism formation in stems of Populus trichocarpa provides insight into signaling and the biology of refilling.

Identifieur interne : 002C67 ( Main/Exploration ); précédent : 002C66; suivant : 002C68

Transcriptome response to embolism formation in stems of Populus trichocarpa provides insight into signaling and the biology of refilling.

Auteurs : Francesca Secchi [États-Unis] ; Matthew E. Gilbert ; Maciej A. Zwieniecki

Source :

RBID : pubmed:21951466

Descripteurs français

English descriptors

Abstract

The mechanism of embolism repair in transpiring plants is still not understood, despite significant scientific effort. The refilling process is crucial to maintaining stem transport capacity and ensuring survival for plants experiencing dynamic changes in water stress. Refilling air-filled xylem vessels requires an energy and water source that can only be provided by adjacent living parenchyma cells. Here, we report an analysis of the transcriptome response of xylem parenchyma cells after embolism formation in Populus trichocarpa trees. Genes encoding aquaporins, ion transporters, and carbohydrate metabolic pathways were up-regulated, and there was a significant reduction in the expression of genes responding to oxidative stress. Thus, a novel view of the plant response to embolism emerges that suggests a role for oxygen in embolized vessels as a signal triggering xylem refilling and for the activity of cation transport as having a significant role in the generation of the energy gradient necessary to heal embolized vessels. These findings redefine current hypotheses surrounding the refilling phenomenon and provide insight into the complexity of the biological response to the seemingly simple physical event of xylem embolism formation.

DOI: 10.1104/pp.111.185124
PubMed: 21951466
PubMed Central: PMC3252146


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptome response to embolism formation in stems of Populus trichocarpa provides insight into signaling and the biology of refilling.</title>
<author>
<name sortKey="Secchi, Francesca" sort="Secchi, Francesca" uniqKey="Secchi F" first="Francesca" last="Secchi">Francesca Secchi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Arnold Arboretum, Harvard University, Boston, Massachusetts 02131, USA. fsecchi@oeb.harvard.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Arnold Arboretum, Harvard University, Boston, Massachusetts 02131</wicri:regionArea>
<orgName type="university">Université Harvard</orgName>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gilbert, Matthew E" sort="Gilbert, Matthew E" uniqKey="Gilbert M" first="Matthew E" last="Gilbert">Matthew E. Gilbert</name>
</author>
<author>
<name sortKey="Zwieniecki, Maciej A" sort="Zwieniecki, Maciej A" uniqKey="Zwieniecki M" first="Maciej A" last="Zwieniecki">Maciej A. Zwieniecki</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21951466</idno>
<idno type="pmid">21951466</idno>
<idno type="doi">10.1104/pp.111.185124</idno>
<idno type="pmc">PMC3252146</idno>
<idno type="wicri:Area/Main/Corpus">002C79</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002C79</idno>
<idno type="wicri:Area/Main/Curation">002C79</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002C79</idno>
<idno type="wicri:Area/Main/Exploration">002C79</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptome response to embolism formation in stems of Populus trichocarpa provides insight into signaling and the biology of refilling.</title>
<author>
<name sortKey="Secchi, Francesca" sort="Secchi, Francesca" uniqKey="Secchi F" first="Francesca" last="Secchi">Francesca Secchi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Arnold Arboretum, Harvard University, Boston, Massachusetts 02131, USA. fsecchi@oeb.harvard.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Arnold Arboretum, Harvard University, Boston, Massachusetts 02131</wicri:regionArea>
<orgName type="university">Université Harvard</orgName>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gilbert, Matthew E" sort="Gilbert, Matthew E" uniqKey="Gilbert M" first="Matthew E" last="Gilbert">Matthew E. Gilbert</name>
</author>
<author>
<name sortKey="Zwieniecki, Maciej A" sort="Zwieniecki, Maciej A" uniqKey="Zwieniecki M" first="Maciej A" last="Zwieniecki">Maciej A. Zwieniecki</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air (MeSH)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Membrane Transport Proteins (genetics)</term>
<term>Membrane Transport Proteins (metabolism)</term>
<term>Metabolic Networks and Pathways (drug effects)</term>
<term>Metabolic Networks and Pathways (genetics)</term>
<term>Models, Biological (MeSH)</term>
<term>Nucleic Acid Hybridization (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Stems (drug effects)</term>
<term>Plant Stems (genetics)</term>
<term>Plant Stems (physiology)</term>
<term>Populus (drug effects)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (physiology)</term>
<term>Signal Transduction (drug effects)</term>
<term>Signal Transduction (genetics)</term>
<term>Stress, Physiological (drug effects)</term>
<term>Stress, Physiological (genetics)</term>
<term>Sucrose (pharmacology)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transcriptome (drug effects)</term>
<term>Transcriptome (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Air (MeSH)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Hybridation d'acides nucléiques (génétique)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Protéines de transport membranaire (génétique)</term>
<term>Protéines de transport membranaire (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Saccharose (pharmacologie)</term>
<term>Stress physiologique (effets des médicaments et des substances chimiques)</term>
<term>Stress physiologique (génétique)</term>
<term>Tiges de plante (effets des médicaments et des substances chimiques)</term>
<term>Tiges de plante (génétique)</term>
<term>Tiges de plante (physiologie)</term>
<term>Transcriptome (effets des médicaments et des substances chimiques)</term>
<term>Transcriptome (génétique)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
<term>Transduction du signal (génétique)</term>
<term>Voies et réseaux métaboliques (effets des médicaments et des substances chimiques)</term>
<term>Voies et réseaux métaboliques (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Membrane Transport Proteins</term>
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Metabolic Networks and Pathways</term>
<term>Plant Stems</term>
<term>Populus</term>
<term>Signal Transduction</term>
<term>Stress, Physiological</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Populus</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Stress physiologique</term>
<term>Tiges de plante</term>
<term>Transcriptome</term>
<term>Transduction du signal</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Metabolic Networks and Pathways</term>
<term>Nucleic Acid Hybridization</term>
<term>Plant Stems</term>
<term>Populus</term>
<term>Signal Transduction</term>
<term>Stress, Physiological</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Hybridation d'acides nucléiques</term>
<term>Populus</term>
<term>Protéines de transport membranaire</term>
<term>Protéines végétales</term>
<term>Stress physiologique</term>
<term>Tiges de plante</term>
<term>Transcriptome</term>
<term>Transduction du signal</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Membrane Transport Proteins</term>
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines de transport membranaire</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Saccharose</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sucrose</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Stems</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Air</term>
<term>Models, Biological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Air</term>
<term>Modèles biologiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The mechanism of embolism repair in transpiring plants is still not understood, despite significant scientific effort. The refilling process is crucial to maintaining stem transport capacity and ensuring survival for plants experiencing dynamic changes in water stress. Refilling air-filled xylem vessels requires an energy and water source that can only be provided by adjacent living parenchyma cells. Here, we report an analysis of the transcriptome response of xylem parenchyma cells after embolism formation in Populus trichocarpa trees. Genes encoding aquaporins, ion transporters, and carbohydrate metabolic pathways were up-regulated, and there was a significant reduction in the expression of genes responding to oxidative stress. Thus, a novel view of the plant response to embolism emerges that suggests a role for oxygen in embolized vessels as a signal triggering xylem refilling and for the activity of cation transport as having a significant role in the generation of the energy gradient necessary to heal embolized vessels. These findings redefine current hypotheses surrounding the refilling phenomenon and provide insight into the complexity of the biological response to the seemingly simple physical event of xylem embolism formation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21951466</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>02</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>157</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2011</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptome response to embolism formation in stems of Populus trichocarpa provides insight into signaling and the biology of refilling.</ArticleTitle>
<Pagination>
<MedlinePgn>1419-29</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.111.185124</ELocationID>
<Abstract>
<AbstractText>The mechanism of embolism repair in transpiring plants is still not understood, despite significant scientific effort. The refilling process is crucial to maintaining stem transport capacity and ensuring survival for plants experiencing dynamic changes in water stress. Refilling air-filled xylem vessels requires an energy and water source that can only be provided by adjacent living parenchyma cells. Here, we report an analysis of the transcriptome response of xylem parenchyma cells after embolism formation in Populus trichocarpa trees. Genes encoding aquaporins, ion transporters, and carbohydrate metabolic pathways were up-regulated, and there was a significant reduction in the expression of genes responding to oxidative stress. Thus, a novel view of the plant response to embolism emerges that suggests a role for oxygen in embolized vessels as a signal triggering xylem refilling and for the activity of cation transport as having a significant role in the generation of the energy gradient necessary to heal embolized vessels. These findings redefine current hypotheses surrounding the refilling phenomenon and provide insight into the complexity of the biological response to the seemingly simple physical event of xylem embolism formation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Secchi</LastName>
<ForeName>Francesca</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Arnold Arboretum, Harvard University, Boston, Massachusetts 02131, USA. fsecchi@oeb.harvard.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gilbert</LastName>
<ForeName>Matthew E</ForeName>
<Initials>ME</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zwieniecki</LastName>
<ForeName>Maciej A</ForeName>
<Initials>MA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GEO</DataBankName>
<AccessionNumberList>
<AccessionNumber>GSE32322</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>09</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026901">Membrane Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>57-50-1</RegistryNumber>
<NameOfSubstance UI="D013395">Sucrose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000388" MajorTopicYN="Y">Air</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026901" MajorTopicYN="N">Membrane Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009693" MajorTopicYN="N">Nucleic Acid Hybridization</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013395" MajorTopicYN="N">Sucrose</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>9</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>9</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21951466</ArticleId>
<ArticleId IdType="pii">pp.111.185124</ArticleId>
<ArticleId IdType="doi">10.1104/pp.111.185124</ArticleId>
<ArticleId IdType="pmc">PMC3252146</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Plant Sci. 2009 Oct;14(10):530-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19726217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2002 May;89(5):820-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21665682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Mar;34(3):514-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21118423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1994 May;14(5):455-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14967682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 May;120(1):7-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10318678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 May 15;23(10):1307-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Nov;31(11):1557-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18684244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):445-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18987216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Aug;24(8):911-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15172841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Aug 1;33(8):1285-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20302602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 May;126(1):27-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11351066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2003 Mar;91(4):419-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12588721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2011 May;4(3):395-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21502662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Sep;9(9):449-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15337495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Oct;133(2):630-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14526109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Sep 11;455(7210):208-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18784721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1088-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20841451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2011 Apr;180(4):604-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 May;31(5):658-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18266903</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
<settlement>
<li>Cambridge (Massachusetts)</li>
</settlement>
<orgName>
<li>Université Harvard</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Gilbert, Matthew E" sort="Gilbert, Matthew E" uniqKey="Gilbert M" first="Matthew E" last="Gilbert">Matthew E. Gilbert</name>
<name sortKey="Zwieniecki, Maciej A" sort="Zwieniecki, Maciej A" uniqKey="Zwieniecki M" first="Maciej A" last="Zwieniecki">Maciej A. Zwieniecki</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Secchi, Francesca" sort="Secchi, Francesca" uniqKey="Secchi F" first="Francesca" last="Secchi">Francesca Secchi</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C67 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002C67 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21951466
   |texte=   Transcriptome response to embolism formation in stems of Populus trichocarpa provides insight into signaling and the biology of refilling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21951466" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020